
1/23

Integrating Microservices

with Mendix

Gonçalo Marcos, Bart Luijten

2018-09-27



2/23

• Integration Overview

• Microservices Overview

• Mendix Microservices Scenario 1 – UI Integration

• Demo 1 – UI Integration

• Some Integration Patterns

• Mendix Microservices Scenario 2 – Event State Transfer

• Demo 2 – Event State Transfer with Kafka

• Best Practices

Agenda



3/23

Why Integration?

• Enterprise systems do not exist in isolation
• Need to connect to CRM, ERP, Inventory, Billing, 

etc.

• Mendix is often used to augment or link 
existing systems

• Mendix favors microservices, which rely on 
integration

ERP CRM

Portal



4/23

A microservice architecture is a method of developing software 

applications as a suite of 

• independently deployable

• small

• modular services

• in which each service runs a unique business process and 

• communicates through a well-defined, lightweight mechanism 

• to serve a business goal

Google Definition of Microservices



5/23

A microservice architecture is a method of developing software 

applications as a suite of 

• independently deployable

• small

• modular services

• in which each service runs a unique business process and 

• communicates through a well-defined, lightweight mechanism 

• to serve a business goal

Google Definition of Micro Services

Microservices should 

prioritize autonomy

“Small” is bigger than 

you think: “one pizza” = 

3-4 people

A microservice serves a 

business goal, over the

full stack

A microservice serves a 

business goal, over the

full stack



6/23

Integration Categories

• Data Integration 
• SOAP, REST, OData, App Services

• Events, Message Queues, Pub-Sub (e.g. Kafka, JMS, RabbitMQ)

• UI Integration
• Same UI theme package

• Deep links

• SSO

• Infrastructure Integration
• CI/CD(Mendix platform APIs), Monitoring tools



7/23

Mendix App Store

Integration 

modules

Integration 

modules

Integration 

modules

Order 

service

Shipping 

service

Invoice 

service

Back-end

Back-end

Custom

Integration

Mendix Microservices Scenario 1

REST

Theme

package

Deep links

IdP
OpenID/SAML



8/23

Demo 1 – UI Integration



9/23

Integration Patterns



10/23

(A)Synchronous communication

Synchronous
• Send a message and block 

while waiting for a response

• Straightforward to achieve 
and understand

Asynchronous
• Fire and (maybe) forget –

Can poll for answer

• Great for long-running jobs 
(as we don’t have to wait)

• More complex to implement 
and understand

Does the caller of a service get an answer?



11/23

Request-Reply (Sync)

• Pros:
• Easy to implement

• Result “immediately” available

• Guaranteed delivery is easy

• Cons:
• Decoupling requires intermediate layer 

• Caller has to deal with service downtime
• For example, through retry mechanism

• Synchronous, need to wait for completion

• Also requires decision on whether to cache query result

Services

Request/Reply



12/23

Event-Driven / Publish-Subscribe (Async)

• One publisher, usually many subscribers

• When there’s a change
• Publisher sends out an event/message to broker

• Broker notifies consumers
• Consumers either pull data directly from Publisher 

• Data gets pushed to Consumers from the broker (Event State Transfer)

• Interesting pattern for microservices
• Decouple services

• Event-driven state transfer

Event Driven

Publish-Subscribe



13/23

• Pros: 
• Decouple publisher from subscriber, which is good for back-

end processes (no end-user involved)

• Sender does not have to “wait” so User can continue working

• Allows message throttling

• Cons: 
• Need to use queue

• Error feedback (e.g. data validation) is not immediate to a user

• Implementation is hard

• Guaranteed delivery is much harder than for request/reply

• Message ordering can be an issue (Competing messages in 
multithreaded implementation)

Event Driven

Publish-Subscribe

Event-Driven / Publish-Subscribe (Async)



14/23

Mendix Microservices Scenario 2

Order 

service

Shipping 

service

Invoice 

service
Back-end

Back-

end

App store

Theme

package

Integration 

modules

Integration 

modules

Integration 

modules

Message broker
queue queue

Events

New 

service



15/23

AlertsHospital 

Analysis

Patient

Analysis
Hospital 

Dashboard

Social FeedEdge Feed

Hospital Management Solution



16/23

Demo 2 – Events with Kafka



17/23

Best Practices



18/23

Best Practices

• Seamless UI Integration
• Use the same UX package to provide a unified experience

• Use deep links to redirect users between services

• Use SSO to transfer sessions



19/23

Best practices

• Microservices integration: Prevent control flow coupling
• Use event-driven integration to prevent latency stacking

Service 1 Service 2 Service 3 Service 4 Service 5

10-50 ms 10-50 ms 10-50 ms 10-50 msLatency



20/23

Best practices

• Each shared object has a global GUID to allow easier data sync

• Correlation IDs in messages, included in logging

Order 

service

Invoice 

service

Order

de89fa3

07:31:03 [Order service] DEBUG - Integration: [de89fa3] Sending completed order object.

07:31:04 [Invoice service] DEBUG – Integration: [de89fa3] Received new order object.



21/23

Best practices

• You are not limited to a single pattern between two apps

Order 

service

Shipping 

service

Invoice 

service
Back-end

Back-

end

Message broker
queue queue

Events

SOAP

REST



22/23

Best practices

• Pick the messaging type that best fits the situation

• Events: less urgency, less need for guaranteed delivery
• Best decoupling

• Best served via queues

• But has only eventual consistency (not real-time)

• Poll for Data / Push Data: immediate need for update
• Best for real-time updates

• Calling system can directly manage failures

• But calling system needs to wait on updates to complete (synchronous)



23/23

Mendix Blog

Mendix.com/blogs

Mendix Platform Evaluation Guide

mendix.com/evaluation-guide



Questions?


